Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 8(16): eabm9896, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452283

RESUMO

We study a Cooper pair transistor realized by two Josephson weak links that enclose a superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject to a magnetic field, isolated subgap levels arise in the superconducting island and, because of the Coulomb blockade, mediate a supercurrent by coherent cotunneling of Cooper pairs. We show that the supercurrent resulting from such cotunneling events exhibits, for low to moderate magnetic fields, a phase offset that discriminates even and odd charge ground states on the superconducting island. Notably, this phase offset persists when a subgap state approaches zero energy and, based on theoretical considerations, permits parity measurements of subgap states by supercurrent interferometry. Such supercurrent parity measurements could, in a series of experiments, provide an alternative approach for manipulating and protecting quantum information stored in the isolated subgap levels of superconducting islands.

4.
Nat Commun ; 11(1): 3666, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699261

RESUMO

Detecting the transmission phase of a quantum dot via interferometry can reveal the symmetry of the orbitals and details of electron transport. Crucially, interferometry will enable the read-out of topological qubits based on one-dimensional nanowires. However, measuring the transmission phase of a quantum dot in a nanowire has not yet been established. Here, we exploit recent breakthroughs in the growth of one-dimensional networks and demonstrate interferometric read-out in a nanowire-based architecture. In our two-path interferometer, we define a quantum dot in one branch and use the other path as a reference arm. We observe Fano resonances stemming from the interference between electrons that travel through the reference arm and undergo resonant tunnelling in the quantum dot. Between consecutive Fano peaks, the transmission phase exhibits phase lapses that are affected by the presence of multiple trajectories in the interferometer. These results provide critical insights for the design of future topological qubits.

6.
Nat Commun ; 9(1): 4801, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442935

RESUMO

The number of electrons in small metallic or semiconducting islands is quantised. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condensate must have an even parity. This ground state (GS) is foundational for all superconducting qubit devices. Here, we study a hybrid superconducting-semiconducting island and find three typical GS evolutions in a parallel magnetic field: a robust 2e-periodic even-parity GS, a transition to a 2e-periodic odd-parity GS, and a transition from a 2e- to a 1e-periodic GS. The 2e-periodic odd-parity GS persistent in gate-voltage occurs when a spin-resolved subgap state crosses zero energy. For our 1e-periodic GSs we explicitly show the origin being a single zero-energy state gapped from the continuum, i.e., compatible with an Andreev bound states stabilized at zero energy or the presence of Majorana zero modes.

7.
Nature ; 556(7699): 74-79, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590094

RESUMO

Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

8.
Nature ; 548(7668): 434-438, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28836603

RESUMO

Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons-which are key elements of topological quantum computing-fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire 'hashtags' reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

9.
Nano Lett ; 17(11): 6511-6515, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28665621

RESUMO

Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in most of the contact pairs of the epitaxial InSb nanowire networks: the hallmark of ballistic transport behavior.

10.
Nano Lett ; 17(2): 721-727, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28173706

RESUMO

Majorana zero modes (MZMs), prime candidates for topological quantum bits, are detected as zero bias conductance peaks (ZBPs) in tunneling spectroscopy measurements. Implementation of a narrow and high tunnel barrier in the next generation of Majorana devices can help to achieve the theoretically predicted quantized height of the ZBP. We propose a material-oriented approach to engineer a sharp and narrow tunnel barrier by synthesizing a thin axial segment of GaxIn1-xSb within an InSb nanowire. By varying the precursor molar fraction and the growth time, we accurately control the composition and the length of the barriers. The height and the width of the GaxIn1-xSb tunnel barrier are extracted from the Wentzel-Kramers-Brillouin (WKB) fits to the experimental I-V traces.

11.
Nanotechnology ; 26(20): 205604, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25927420

RESUMO

Obtaining compositional homogeneity without compromising morphological or structural quality is one of the biggest challenges in growing ternary alloy compound semiconductor nanowires. Here we report growth of Au-seeded InxGa1-xAs nanowires via metal-organic vapour phase epitaxy with uniform composition, morphology and pure wurtzite (WZ) crystal phase by carefully optimizing growth temperature and V/III ratio. We find that high growth temperatures allow the InxGa1-xAs composition to be more uniform by suppressing the formation of typically observed spontaneous In-rich shells. A low V/III ratio results in the growth of pure WZ phase InxGa1-xAs nanowires with uniform composition and morphology while a high V/III ratio allows pure zinc-blende (ZB) phase to form. Ga incorporation is found to be dependent on the crystal phase favouring higher Ga concentration in ZB phase compared to the WZ phase. Tapering is also found to be more prominent in defective nanowires hence it is critical to maintain the highest crystal structure purity in order to minimize tapering and inhomogeneity. The InP capped pure WZ In0.65Ga0.35As core-shell nanowire heterostructures show 1.54 µm photoluminescence, close to the technologically important optical fibre telecommunication wavelength, which is promising for application in photodetectors and nanoscale lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...